谭凯文, 张立民, 闫文君, 等. 面向非均衡类别的半监督辐射源识别方法[J]. 雷达学报, 2022, 11(4): 713–727. doi: 10.12000/JR22043.
引用本文: 谭凯文, 张立民, 闫文君, 等. 面向非均衡类别的半监督辐射源识别方法[J]. 雷达学报, 2022, 11(4): 713–727. doi: 10.12000/JR22043.
TAN Kaiwen, ZHANG Limin, YAN Wenjun, et al. A semi-supervised emitter identification method for imbalanced category[J]. Journal of Radars, 2022, 11(4): 713–727. doi: 10.12000/JR22043.
Citation: TAN Kaiwen, ZHANG Limin, YAN Wenjun, et al. A semi-supervised emitter identification method for imbalanced category[J]. Journal of Radars, 2022, 11(4): 713–727. doi: 10.12000/JR22043.

面向非均衡类别的半监督辐射源识别方法

A Semi-supervised Emitter Identification Method for Imbalanced Category

  • 摘要: 针对辐射源个体识别(SEI)中样本标签不完整和数据类别分布不平衡导致分类准确率下降的问题,该文提出了一种基于代价敏感学习和半监督生成式对抗网络(GAN)的特定辐射源分类方法。该方法通过半监督训练方式优化生成器和判别器的网络参数,并向残差网络中添加多尺度拓扑模块融合时域信号的多维分辨率特征,赋予生成样本额外标签从而直接利用判别器完成分类。同时设计代价敏感损失缓解优势样本导致的梯度传播失衡,改善分类器在类不平衡数据集上的识别性能。在4类失衡仿真数据集上的实验结果表明,存在40%无标记样本的情况下,该方法对于5个辐射源的平均识别率相比于交叉熵损失和焦点损失分别提高5.34%和2.69%,为解决数据标注缺失和类别分布不均条件下的特定辐射源识别问题提供了新思路。

     

    Abstract: This paper proposes an SEI method based on cost-sensitive learning and semisupervised generative adversarial networks to address the problem of incomplete sample labels and imbalanced data category distribution in Specific Emitter Identification (SEI), which leads to a decline in inaccuracy. Through semisupervised training, the method optimizes the network parameters of the generator and discriminator, adds a multiscale topological block to ResNet to fuse the multi-dimensional resolution features of the time-domain signal, and attributes additional labels to the generated samples to directly use the discriminator to complete the classification. Simultaneously, a cost-sensitive loss is designed to alleviate the imbalance of gradient propagation caused by the dominant samples and improve the recognition performance of the classifier on the class-imbalanced dataset. The experimental results on four types of imbalanced datasets show that in the presence of 40% unlabeled samples, the average recognition accuracy for five emitters is improved by 5.34% and 2.69%, respectively, compared with the cross-entropy loss and focus loss. This provides a new idea for solving the problem of SEI under the conditions of insufficient data labels and an unbalanced distribution of data.

     

/

返回文章
返回