朱晗归, 冯为可, 冯存前, 等. 机载雷达深度展开空时自适应处理方法[J]. 雷达学报, 2022, 11(4): 676–691. doi: 10.12000/JR22051.
引用本文: 朱晗归, 冯为可, 冯存前, 等. 机载雷达深度展开空时自适应处理方法[J]. 雷达学报, 2022, 11(4): 676–691. doi: 10.12000/JR22051.
ZHU Hangui, FENG Weike, FENG Cunqian, et al. Deep unfolding based space-time adaptive processing method for airborne radar[J]. Journal of Radars, 2022, 11(4): 676–691. doi: 10.12000/JR22051.
Citation: ZHU Hangui, FENG Weike, FENG Cunqian, et al. Deep unfolding based space-time adaptive processing method for airborne radar[J]. Journal of Radars, 2022, 11(4): 676–691. doi: 10.12000/JR22051.

机载雷达深度展开空时自适应处理方法

Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar

  • 摘要: 稀疏恢复空时自适应处理(SR-STAP)方法能够利用少量训练距离单元实现对机载雷达杂波的有效抑制。然而,现有SR-STAP方法均基于模型驱动实现,存在着参数设置困难、运算复杂度高等问题。针对这些问题,该文将基于模型驱动的SR方法和基于数据驱动的深度学习方法相结合,首次将深度展开(DU)引入到机载雷达杂波抑制和目标检测之中。首先,建立了阵列误差(AE)条件下的杂波空时谱和阵列误差参数联合估计模型,并利用交替方向乘子法(ADMM)进行求解;接着,将ADMM算法展开为深度神经网络AE-ADMM-Net,利用充足完备的数据集对其迭代参数进行优化;最后,利用训练后的AE-ADMM-Net对训练距离单元数据进行处理,快速获得杂波空时谱和阵列误差参数的准确估计。仿真结果表明:与典型SR-STAP方法相比,该文所提出的DU-STAP方法能够在保持较低运算复杂度的同时提高杂波抑制性能。

     

    Abstract: The Sparse Recovery Space-Time Adaptive Processing (SR-STAP) method can use a small number of training range cells to effectively suppress the clutter of airborne radar. The SR-STAP approach may successfully eliminate airborne radar clutter using a limited number of training range cells. However, present SR-STAP approaches are all model-driven, limiting their practical applicability due to parameter adjustment difficulties and high computational cost. To address these problems, this study, for the first time, introduces the Deep Unfolding/Unrolling (DU) method to airborne radar clutter reduction and target recognition by merging the model-driven SR method and the data-driven deep learning method. Firstly, a combined estimation model for clutter space-time spectrum and Array Error (AE) parameters is established and solved using the Alternating Direction Method of Multipliers (ADMM) algorithm. Secondly, the ADMM algorithm is unfolded to a deep neural network, named AE-ADMM-Net, to optimize all iteration parameters using a complete training dataset. Finally, the training range cell data is processed by the trained AE-ADMM-Net, jointly estimating the clutter space-time spectrum and the radar AE parameters efficiently and accurately. Simulation results show that the proposed DU-STAP method can achieve higher clutter suppression performance with lower computational cost compared to typical SR-STAP methods.

     

/

返回文章
返回