• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
TAN Kaiwen, ZHANG Limin, YAN Wenjun, et al. A semi-supervised emitter identification method for imbalanced category[J]. Journal of Radars, 2022, 11(4): 713–727. doi: 10.12000/JR22043.
Citation: TAN Kaiwen, ZHANG Limin, YAN Wenjun, et al. A semi-supervised emitter identification method for imbalanced category[J]. Journal of Radars, 2022, 11(4): 713–727. doi: 10.12000/JR22043.

A Semi-supervised Emitter Identification Method for Imbalanced Category

  • This paper proposes an SEI method based on cost-sensitive learning and semisupervised generative adversarial networks to address the problem of incomplete sample labels and imbalanced data category distribution in Specific Emitter Identification (SEI), which leads to a decline in inaccuracy. Through semisupervised training, the method optimizes the network parameters of the generator and discriminator, adds a multiscale topological block to ResNet to fuse the multi-dimensional resolution features of the time-domain signal, and attributes additional labels to the generated samples to directly use the discriminator to complete the classification. Simultaneously, a cost-sensitive loss is designed to alleviate the imbalance of gradient propagation caused by the dominant samples and improve the recognition performance of the classifier on the class-imbalanced dataset. The experimental results on four types of imbalanced datasets show that in the presence of 40% unlabeled samples, the average recognition accuracy for five emitters is improved by 5.34% and 2.69%, respectively, compared with the cross-entropy loss and focus loss. This provides a new idea for solving the problem of SEI under the conditions of insufficient data labels and an unbalanced distribution of data.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return